
SCALABLE MACHINE LEARNING
WITH APACHE IGNITE, PYTHON,

AND JULIA: FROM PROTOTYPE TO
PRODUCTION

Created by and
May 21, 2021

Peter Gagarinov Ilya Roublev

1 / 34

http://www.github.com/pgagarinov
http://www.github.com/irublev

ALLIEDIUM AISSISTANT : ABOUT THE PROJECT[1]

Makes the project management easier via automating the ticket assignment, labeling,
ranking by priority
Uses ML to infer rules from existing Jira tickets

2 / 34

OVERVIEW
What is JIRA app?
Alliedium AIssistant backend design paradigms, requirements to the underlying database
The legacy backend architecture vs the current backend architecture
PostgresSQL + Celery vs Apache Ignite + Ray Serve as both the database and computing
grid: cons and pros for our use case
Alliedium Apache Ignite Migration Tool: features and assumptions
Python vs Julia as Apache Ignite ML alternative

3 / 34

WHY JIRA?
Profitable for plugin developers: license cost depends on number of all users even if they
do not use the plugin
Very popular — millions of users around the globe

4 / 34

ALLIEDIUM AISSISTANT BACKEND DESIGN PARADIGMS
SaaS built using microservice architecture
Container orchestration
Cloud-based fail-safe distributed architecture
Scalable key-value database with SQL layer
Multitenancy
Background task manager
Internal ML engine as a service
Should support both cloud and on-premise deployment

5 / 34

DATABASE REQUIREMENTS
integrates with Java natively
highly available and horizontally scalable
fault-tolerant and distributed
supports distributed ACID transactions
provides both persistent and in-memory storage
supports SQL for distributed data

6 / 34

DATABASE REQUIREMENTS (CONTINUED...)
supports user-defined distributed jobs
provides automatic failover (jobs and db connections)
provides Transparent Data Encryption for safety reasons
supports native configurations for deployment in Kubernetes
free and open-source

7 / 34

INITIAL TECHNOLOGY STACK
Spring Boot as a web framework
PostgreSQL as a database
Hibernate as an ORM tool

Celery + RabbitMQ as a computing grid[2]

Scikit-Learn as an ML framework (runs inside Celery)[3]

8 / 34

CURRENT TECHNOLOGY STACK
Spring Boot as a web framework
Apache Ignite as a distributed database, no ORM is used

Celery + RabbitMQ → Apache Ignite + Ray Serve[4][5][6]

Scikit-Learn + PyTorch[7][8]

9 / 34

User

Apache Ignite

Apache IgniteApache Ignite

Apache Ignite

Ray Serve

Ray Serve

Ray Serve

Spring Boot
Web Server

Spring Boot
Web Server

Load Balancer

JIRA
instance

JIRA
instance

JIRA
instance

User

Kubernetes

Jira cloud

Spring Boot
Web Server

Deep

Learning
Container

Deep
Learning
Container

Deep

Learning
Container

Amazon cloud
SageMaker

Amazon cloud/on premise

10 / 34

POSTGRESQL: GOOD

Easy to deploy[9]

Easy to integrate with Atlassian Connect Spring Boot[10]

Easy to version track schema changes and perform data migrations[11][12]

supports most of the major features of ANSI SQL:2016 (starting with
PostgreSQL 12) [13] [14]

Full support for ACID transactions

11 / 34

POSTGRESQL: NOT SO GOOD
Not horizontally scalable (unless some PostgreSQL-derivative database is
used) [15] [16] [17] [18]

Requires more efforts for mapping objects to tables
Key-value API needs to be imitated via

select value from some_table where key = some_key

Transparent Data Encryption is available only via an unofficial patch[19][20]

In-memory tables: approximation only (RAM disk, UNLOGGED)[21][22][23][24]

12 / 34

APACHE IGNITE AS A DATABASE: GOOD
Thick client for Java providing a full set of APIs
Both key-value and SQL API
Distributed
Native persistence

Full support for distributed ACID transactions[25]

Built-in Transparent Data Encryption
In-memory caches
Good integration with Kubernetes
Automatic connection failover for both thick and thin clients

13 / 34

APACHE IGNITE AS A DATABASE: NOT SO GOOD
No open-source schema version tracking and data migration tools

Database backup/restore is difficult[26][27]

Still supports only a subset of ANSI SQL:1999 (e.g. no foreign keys)[28]

SQL transactions are still in beta[29]

Doesn't play nicely with Spring Boot DevTools[30][31][32]

Requires network isolation for development purposes:
https://github.com/Alliedium/arch-network-isolator[33]

Python thin client doesn't yet support transactions[34]

Using the thick client API from Python requires Py4J Python-Java bridge[35] [36]

14 / 34

https://github.com/Alliedium/arch-network-isolator

ALLIEDIUM APACHE IGNITE MIGRATION TOOL: FEATURES
Open-source (Apache License 2.0): https://github.com/Alliedium/ignite-migration-tool
The data migration is performed in 3 stages:

exporting data and meta data from a live Apache Ignite cluster into an isolated
filesystem directory in form of Avro files
applying database schema transformations to the exported data and writing the
transformed data into a separate filesystem directory
uploading the transformed Avro files to the new cluster

Data and metadata transformations are defined in a way that is Avro format agnostic

15 / 34

https://github.com/Alliedium/ignite-migration-tool

ALLIEDIUM APACHE IGNITE MIGRATION TOOL: FEATURES
Data and metadata transformations are applied to Avro files on disk and do not require a
live Apache Ignite cluster
The tool can be used for creating data backups that are Apache Ignite version
independent (assuming definitions of QueryEntity, CacheConfiguration and AffinityKey
classes are stable)
List of supported cache value field datatypes is limited by those allowed in QueryEntity
(see)https://ignite.apache.org/docs/latest/sql-reference/data-types
Cache keys can be of arbitrary non-user defined Java types and AffinityKey of such
Source and target cluster topologies do not have to be the same
Encrypted caches are supported

16 / 34

https://ignite.apache.org/docs/latest/sql-reference/data-types

ALLIEDIUM APACHE IGNITE MIGRATION TOOL: ASSUMPTIONS
Source and target should be different clusters
Transformed data class definitions should be available at all target cluster nodes
Each cache is configured with QueryEntity (field not present in QueryEntity definition are
invisible to the tool)
In-memory caches are backed up along with the persisted caches

17 / 34

CELERY: GOOD
Python-based — easier to integrate with Python-based ML frameworks
"At Least Once" delivery guarantee for Celery message queues (implemented via
RabbitMQ)[38]

18 / 34

CELERY: NOT SO GOOD

Requires a separate message broker (RabbitMQ) for submitting tasks[39]

Requires a separate results backend for large results[39]

No out-of-the-box pure Java API[40]

If not run inside K8s a special care is needed for RabbitMQ auto-failover
implementation[41]

Automatic connection failover is available only inside Kubernetes

19 / 34

APACHE IGNITE AS A COMPUTING GRID: GOOD
Native Java API for messages and distributed computing tasks
Built-in distributed basic ML models
Automatic connection failover for both thick and thin clients

20 / 34

APACHE IGNITE AS A COMPUTING GRID: NOT SO GOOD

Weaker delivery guarantees — not suitable for important messages (in finance e.g.)[42]

Built-in ML models lack certain features for our use case

Python thin client doesn't support neither message nor computing API[34][43]

Using the thick client API from Python requires Py4J Python-Java bridge[36]

21 / 34

PYTHON VS JULIA AS APACHE IGNITE ML ALTERNATIVE

Apache Ignite ML MLJ (Julia) scikit-learn (Python)

Fit time + Cross-validation time (10 folds)
Apache Ignite ML MLJ scikit-learn

Linear Regression (SAG) 5.438 sec+40.237 sec 0.066 sec+0.534 sec
Linear Regression (LBFGS) 0.196 sec+1.372 sec 0.082 sec+0.551 sec
Decision Tree 1.664 sec+12.259 sec 0.146 sec+1.465 sec 0.197 sec+1.755 sec

Ignite ver. 2.10.0 (1 Ignite node), Julia ver. 1.6.1 (MLJ v0.16.4, MLJLinearModels v0.5.4, DecisionTree v0.10.10), Python ver. 3.8.6 (scikit-learn v0.23.2),
Windows 10, 32 GB RAM, Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, Data: a subset of Fraud Detection dataset (7936 rows, 30 columns, 2 classes)

ML in both Julia and Python is much faster than Apache Ignite ML exactly for our case
(~8-10k observations)

[48] [3]

LogisticRegressionModel lrClassifier =

 new LogisticRegressionSGDTrainer()

 .fit(...);

DecisionTreeModel dtClassifier =

 new DecisionTreeClassificationTrainer()

 .fit(...);

lr_classifier = LogisticClassifier(...)

lr_mach = machine(

 lr_classifier, ...) |> fit!

dt_classifier = (

 @load DecisionTreeClassifier pkg=DecisionTree)(...)

dt_mach = machine(

 dt_classifier, ...) |> fit!

lr_classifier = LogisticRegression(...)

lr_classifier.fit(...)

dt_classifier = DecisionTreeClassifier(...)

dt_classifier.fit(...)

[49][50]

A limited set of opt. solvers in Apache Ignite ML (e.g. LogisticRegressionSGDTrainer for
LogisticRegressionModel, in scikit-learn — 5 solvers)

No nested cross-validation , no stratified cross-validation in Apache Ignite ML[51] [52]

22 / 34

PYTHON VS JULIA AS APACHE IGNITE ML ALTERNATIVE
WHERE PYTHON > JULIA

WHERE PYTHON = JULIA

WHERE JULIA < PYTHON

Python Ignite thin client, no such client for Julia

Ray Serve (e.g. Genie.jl + Dagger.jl is not an equivalent replacement)[4][5][6]

Python has a much more mature ML ecosystem comparing to Julia
scikit-learn is sometimes faster than MLJ

Calling Apache Ignite thick client Java API: Py4J (Python) vs JavaCall.jl (Julia)[36] [53]

Calling Apache Ignite thick client C++ API: Cython (Python) vs CxxWrap.jl (Julia)[54] [55]

Julia is more flexible

Easier parallelism (native threads in Julia vs GIL in Python)[56]

23 / 34

POSTGRESQL → APACHE IGNITE: MIGRATION DIFFICULTIES
Apache Ignite cache imitating atlassian_host table needs to be created prior to starting
Atlassian Connect Spring Boot[44]

Fields having non-SQL datatypes (custom class-valued fields) need to be stored as XML
(via Binarylizable and QueryEntity) to be readable in SQL client tools such as
DBeaver and DataGrip

[45] [46]

Still not possible to get the list of all atomics names inside the cluster[47]

24 / 34

CELERY + RABBITMQ → APACHE IGNITE: MIGRATION DIFFICULTIES
Still need a place to run Python-based ML calculations, that is why Ray Serve
More care on the front-end is required due to no delivery guarantees

25 / 34

Ray Serve Container

SciKit Learn

SageMaker
Python Client

CPU

ML Serving
Endpoints
(REST API)

Deep Learning Container

PyTorch

ML libraries

GPU

AWS
SageMaker
Endpoints
(REST API)

Apache Ignite Node

ML Job

ML Job

ML Job

CPU

26 / 34

QUESTIONS?

27 / 34

REFERENCES
[1]
[2]
[3]
[4]
[5]

[6]

[7]
[8]

[9]

Alliedium AIssistant Jira App, ver. 1.2, 2020
Johansson Lovisa, Running Celery with RabbitMQ, www.cloudampq.com, 2019
scikit-learn: Machine Learning in Python, scikit-learn.org, ver. 0.24, 2020
Ray Serve: Scalable and Programmable Serving, docs.ray.io, ver. 1.2.0, 2021
Mo Simon, Machine Learning Serving is Broken: And How Ray Serve Can Fix it,

medium.com, 2020
Oakes Edward, The Simplest Way to Serve your NLP Model in Production with Pure

Python, medium.com, 2020
How would you compare Scikit-learn with PyTorch?, www.quora.com, 2020
K Dhiraj, Why PyTorch Is the Deep Learning Framework of the Future, medium.com,

2019
Chiniara Dan, Installing PostgreSQL for Mac, Linux, and Windows, medium.com, 2019

28 / 34

https://alliedium.alliedtesting.com/
https://www.cloudamqp.com/blog/2019-10-24-how-to-run-celery-with-rabbitmq.html
https://scikit-learn.org/stable/
https://docs.ray.io/en/latest/serve/index.html
https://medium.com/distributed-computing-with-ray/machine-learning-serving-is-broken-f59aff2d607f
https://medium.com/distributed-computing-with-ray/the-simplest-way-to-serve-your-nlp-model-in-production-with-pure-python-d42b6a97ad55
https://www.quora.com/How-would-you-compare-Scikit-learn-with-PyTorch
https://blog.paperspace.com/why-use-pytorch-deep-learning-framework/
https://medium.com/@dan.chiniara/installing-postgresql-for-windows-7ec8145698e3

REFERENCES
[10]
[11]

[12]

[13]
[14]
[15]

[16]

Atlassian Connect Spring Boot, bitbucket.org, ver. 2.1.2, 2020
Oliveira Junior, The best and easy way to handle database migrations (version

control), medium.com, 2019
Gopal Vineet, Move fast and migrate things: how we automated migrations in

Postgres, medium.com, 2019
PostgreSQL: Appendix D. SQL Conformance, www.postgresql.org, ver. 13.2, 2021
PostgreSQL vs SQL Standard, wiki.postgresql.org, 2020
Kuizinas Gajus, Lessons learned scaling PostgreSQL database to 1.2bn

records/month: Choosing where to host the database, materialising data and using
database as a job queue, medium.com, 2019

Slot Marco, Why the RDBMS is the future of distributed databases, �. Postgres and
Citus, www.citiusdata.com, 2018

29 / 34

https://bitbucket.org/atlassian/atlassian-connect-spring-boot/src/master/
https://medium.com/faun/the-best-and-easy-way-to-handle-database-migrations-version-control-c31e4f7b1241
https://benchling.engineering/move-fast-and-migrate-things-how-we-automated-migrations-in-postgres-d60aba0fc3d4
https://www.postgresql.org/docs/13/features.html
https://wiki.postgresql.org/wiki/PostgreSQL_vs_SQL_Standard
https://gajus.medium.com/lessons-learned-scaling-postgresql-database-to-1-2bn-records-month-edc5449b3067
https://www.citusdata.com/blog/2018/11/30/why-rdbms-is-the-future-of-distributed-databases/

REFERENCES
[17]
[18]

[19]

[20]
[21]

[22]

[23]
[24]

Knoldus Inc., Want to know about Greenplum?, medium.com, 2020
TimescaleDB 2.0: A multi-node, petabyte-scale, completely free relational database

for time-series, blog.timescale.com, 2020
Chen Neil, Rise and Fall for an expected feature in PostgreSQL — Transparent Data

Encryption, highgo.ca, 2020
PostgreSQL Transparent Data Encryption, www.cybertec-postgresql.com, 2021
Huang Cary, Approaches to Achieve in-Memory Table Storage with PostgreSQL

Pluggable API, highgo.ca, 2020
Westermann Daniel, Can I put my temporary tablespaces on a RAM disk with

PostgreSQL?, blog.dbi-services.com, 2020
PostgreSQL: 22.6. Tablespaces, www.postgresql.org, ver. 13.2, 2021
Ringer Craig, Putting a PostgreSQL tablespace on a ramdisk risks ALL your data, 2014

30 / 34

https://medium.com/@knoldus/want-to-know-about-greenplum-421fa92a7dea
https://blog.timescale.com/blog/timescaledb-2-0-a-multi-node-petabyte-scale-completely-free-relational-database-for-time-series/
https://www.highgo.ca/2020/12/14/rise-and-fall-for-an-expected-feature-in-postgresql-transparent-data-encryption/
https://www.cybertec-postgresql.com/en/products/postgresql-transparent-data-encryption/
https://www.highgo.ca/2020/07/24/approaches-to-achieve-in-memory-table-storage-with-postgresql-pluggable-api/
https://blog.dbi-services.com/can-i-put-my-temporary-tablespaces-on-a-ram-disk-with-postgresql/
https://www.postgresql.org/docs/13/manage-ag-tablespaces.html
https://www.2ndquadrant.com/en/blog/postgresql-no-tablespaces-on-ramdisks/

REFERENCES
[25]

[26]

[27]

[28]
[29]
[30]

[31]

Apache Ignite: ACID Transactions with Apache Ignite, ignite.apache.org, ver. 2.9.1,
2020

Apache Ignite: Cluster Snapshots: Current Limitations, ignite.apache.org, ver. 2.9.1,
2020

Ignite in-memory + other SQL store without fully loading all data into Ignite, Apache
Ignite Users, 2020

SQL Conformance, ignite.apache.org, ver. 2.9.1, 2020
Apache Ignite: SQL Transactions, ignite.apache.org, ver. 2.9.1, 2020
Using Spring Boot: 8. Developer Tools, 8.2.7. Known Limitations, docs.spring.io, ver.

2.4.3, 2021
ClassCastException while fetching data from IgniteCache (with custom persistent

store), Apache Ignite Users, 2016

31 / 34

https://ignite.apache.org/features/acid-transactions.html
https://ignite.apache.org/docs/latest/persistence/snapshots#current-limitations
http://apache-ignite-users.70518.x6.nabble.com/Ignite-in-memory-other-SQL-store-without-fully-loading-all-data-into-Ignite-td34951.html
https://ignite.apache.org/docs/latest/sql-reference/sql-conformance
https://ignite.apache.org/docs/latest/SQL/sql-transactions
https://docs.spring.io/spring-boot/docs/current/reference/html/using-spring-boot.html#using-boot-devtools-known-restart-limitations
http://apache-ignite-users.70518.x6.nabble.com/ClassCastException-while-fetching-data-from-IgniteCache-with-custom-persistent-store-td8377.html

REFERENCES
[32]

[33]

[34]
[35]
[36]
[37]
[38]
[39]
[40]

Spring Session and Dev Tools Cause ClassCastException, github.com/spring-
projects/spring-boot, 2017

Bhuiyan Shamim, A Simple Checklist for Apache Ignite Beginners (5. Ghost Nodes),
dzone.com, 2019

Apache Ignite: Thin Clients Overview, ignite.apache.org, ver. 2.9.1, 2020
Kulichenko Valentin, Apache Ignite: Client Connectors Variety, dzone.com, 2020
Py4J — A Bridge between Python and Java, py4j.org, ver. 0.10.9.2, 2021
MavenRepository: Ignite Spring, ver. 2.9.1, 2020
RabbitMQ: Reliability Guide, Acknowledgements and Confirms, ver. 3.8.13, 2021
First Steps with Celery: Configuration, docs.celeryproject.org, ver. 5.0.5, 2020
Celery: Message Protocol, docs.celeryproject.org, ver. 5.0.5, 2020

32 / 34

https://github.com/spring-projects/spring-boot/issues/3805#issuecomment-316428914
https://dzone.com/articles/a-simple-checklist-for-apache-ignite-beginners
https://ignite.apache.org/docs/latest/thin-clients/getting-started-with-thin-clients
https://dzone.com/articles/apache-ignite-client-connectors-variety
https://www.py4j.org/
https://mvnrepository.com/artifact/org.apache.ignite/ignite-spring/latest
https://www.rabbitmq.com/reliability.html#confirms
https://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html#configuration
https://docs.celeryproject.org/en/stable/internals/protocol.html

REFERENCES
[41]
[42]
[43]
[44]

[45]
[46]
[47]
[48]

[49]

Paudice Genny, High availability with RabbitMQ, blexin.com, 2019
Messaging Reliability, Apache Ignite Users, 2016
Apache Ignite: Python Thin Client, ignite.apache.org, ver. 2.9.1, 2020
Gagarinov Peter & Roublev Ilya, Boosting Jira Cloud app development with Apache

Ignite, medium.com, 2020
Apache Ignite JavaDoc: Interface Binarylizable, ignite.apache.org, ver. 2.9.1, 2020
Apache Ignite: SQL API, Query Entities, ignite.apache.org, ver. 2.9.1, 2020
Unable to query system cache through Visor console, Apache Ignite Users, 2017
A Machine Learning Framework for Julia, alan-turing-institute.github.io, ver. 0.16.4,

2021
Credit Card Fraud Detection dataset, kaggle.com, 2018

33 / 34

https://blexin.com/en/blog-en/high-availability-with-rabbitmq/
http://apache-ignite-users.70518.x6.nabble.com/Messaging-Reliability-td3882.html
https://ignite.apache.org/docs/latest/thin-clients/python-thin-client
https://medium.com/alliedium/boosting-jira-cloud-app-development-with-apache-ignite-7eebc7bb3d48
https://ignite.apache.org/releases/latest/javadoc/org/apache/ignite/binary/Binarylizable.html
https://ignite.apache.org/docs/latest/SQL/sql-api#query-entities
http://apache-ignite-users.70518.x6.nabble.com/Unable-to-query-system-cache-through-Visor-console-td18347.html
https://alan-turing-institute.github.io/MLJ.jl/stable/
https://www.kaggle.com/mlg-ulb/creditcardfraud

REFERENCES
[50]

[51]

[52]

[53]
[54]
[55]
[56]

Chaudhri Akmal, Using Apache Ignite's Machine Learning for Fraud Detection at
Scale, dzone.com, 2018

Brownlee Jason, Nested Cross-Validation for Machine Learning with Python,
machinelearningmastery.com, 2021

Brownlee Jason, How to Fix k-Fold Cross-Validation for Imbalanced Classification,
machinelearningmastery.com, 2020

Call Java programs from Julia, juliainterop.github.io, ver. 0.7.7, 2021
Using C++ in Cython, cython.readthedocs.io, ver. 0.29.6, 2019
Janssens Bart, Wrapping a C++ library using CxxWrap.jl, JuliaCon, 2020
Ajitsaria Abhinav, What Is the Python Global Interpreter Lock (GIL)?, realpython.com,

2018

34 / 34

https://dzone.com/articles/using-apache-ignites-machine-learning-for-fraud-de
https://machinelearningmastery.com/nested-cross-validation-for-machine-learning-with-python/
https://machinelearningmastery.com/cross-validation-for-imbalanced-classification/
https://juliainterop.github.io/JavaCall.jl/index.html
https://cython.readthedocs.io/en/stable/src/userguide/wrapping_CPlusPlus.html
https://youtu.be/VoXmXtqLhdo
https://realpython.com/python-gil/

