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ALLIEDIUM AISSISTANT : ABOUT THE PROJECT[1]

Makes the project management easier via automating the ticket assignment, labeling,
ranking by priority
Uses ML to infer rules from existing Jira tickets
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OVERVIEW
What is JIRA app?
Alliedium AIssistant backend design paradigms, requirements to the underlying database
The legacy backend architecture vs the current backend architecture
PostgresSQL + Celery vs Apache Ignite + Ray Serve as both the database and computing
grid: cons and pros for our use case
Alliedium Apache Ignite Migration Tool: features and assumptions
Python vs Julia as Apache Ignite ML alternative
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WHY JIRA?
Profitable for plugin developers: license cost depends on number of all users even if they
do not use the plugin
Very popular — millions of users around the globe
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ALLIEDIUM AISSISTANT BACKEND DESIGN PARADIGMS
SaaS built using microservice architecture
Container orchestration
Cloud-based fail-safe distributed architecture
Scalable key-value database with SQL layer
Multitenancy
Background task manager
Internal ML engine as a service
Should support both cloud and on-premise deployment
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DATABASE REQUIREMENTS
integrates with Java natively
highly available and horizontally scalable
fault-tolerant and distributed
supports distributed ACID transactions
provides both persistent and in-memory storage
supports SQL for distributed data
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DATABASE REQUIREMENTS (CONTINUED...)
supports user-defined distributed jobs
provides automatic failover (jobs and db connections)
provides Transparent Data Encryption for safety reasons
supports native configurations for deployment in Kubernetes
free and open-source
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INITIAL TECHNOLOGY STACK
Spring Boot as a web framework
PostgreSQL as a database
Hibernate as an ORM tool

Celery + RabbitMQ as a computing grid[2]

Scikit-Learn as an ML framework (runs inside Celery)[3]
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CURRENT TECHNOLOGY STACK
Spring Boot as a web framework
Apache Ignite as a distributed database, no ORM is used

Celery + RabbitMQ → Apache Ignite + Ray Serve[4][5][6]

Scikit-Learn + PyTorch[7][8]
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POSTGRESQL: GOOD

Easy to deploy[9]

Easy to integrate with Atlassian Connect Spring Boot[10]

Easy to version track schema changes and perform data migrations[11][12]

supports most of the major features of ANSI SQL:2016 (starting with
PostgreSQL 12)   [13] [14]

Full support for ACID transactions
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POSTGRESQL: NOT SO GOOD
Not horizontally scalable (unless some PostgreSQL-derivative database is
used)       [15] [16] [17] [18]

Requires more efforts for mapping objects to tables
Key-value API needs to be imitated via

select value from some_table where key = some_key

Transparent Data Encryption is available only via an unofficial patch[19][20]

In-memory tables: approximation only (RAM disk, UNLOGGED)[21][22][23][24]
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APACHE IGNITE AS A DATABASE: GOOD
Thick client for Java providing a full set of APIs
Both key-value and SQL API
Distributed
Native persistence

Full support for distributed ACID transactions[25]

Built-in Transparent Data Encryption
In-memory caches
Good integration with Kubernetes
Automatic connection failover for both thick and thin clients
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APACHE IGNITE AS A DATABASE: NOT SO GOOD
No open-source schema version tracking and data migration tools

Database backup/restore is difficult[26][27]

Still supports only a subset of ANSI SQL:1999 (e.g. no foreign keys)[28]

SQL transactions are still in beta[29]

Doesn't play nicely with Spring Boot DevTools[30][31][32]

Requires network isolation for development purposes:
https://github.com/Alliedium/arch-network-isolator[33]

Python thin client doesn't yet support transactions[34]

Using the thick client API  from Python requires Py4J Python-Java bridge[35] [36]
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ALLIEDIUM APACHE IGNITE MIGRATION TOOL: FEATURES
Open-source (Apache License 2.0): https://github.com/Alliedium/ignite-migration-tool
The data migration is performed in 3 stages:

exporting data and meta data from a live Apache Ignite cluster into an isolated
filesystem directory in form of Avro files
applying database schema transformations to the exported data and writing the
transformed data into a separate filesystem directory
uploading the transformed Avro files to the new cluster

Data and metadata transformations are defined in a way that is Avro format agnostic

15 /  34

https://github.com/Alliedium/ignite-migration-tool


ALLIEDIUM APACHE IGNITE MIGRATION TOOL: FEATURES
Data and metadata transformations are applied to Avro files on disk and do not require a
live Apache Ignite cluster
The tool can be used for creating data backups that are Apache Ignite version
independent (assuming definitions of QueryEntity, CacheConfiguration and AffinityKey
classes are stable)
List of supported cache value field datatypes is limited by those allowed in QueryEntity
(see )https://ignite.apache.org/docs/latest/sql-reference/data-types
Cache keys can be of arbitrary non-user defined Java types and AffinityKey of such
Source and target cluster topologies do not have to be the same
Encrypted caches are supported
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ALLIEDIUM APACHE IGNITE MIGRATION TOOL: ASSUMPTIONS
Source and target should be different clusters
Transformed data class definitions should be available at all target cluster nodes
Each cache is configured with QueryEntity (field not present in QueryEntity definition are
invisible to the tool)
In-memory caches are backed up along with the persisted caches
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CELERY: GOOD
Python-based — easier to integrate with Python-based ML frameworks
"At Least Once" delivery guarantee for Celery message queues (implemented via
RabbitMQ)[38]
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CELERY: NOT SO GOOD

Requires a separate message broker (RabbitMQ) for submitting tasks[39]

Requires a separate results backend for large results[39]

No out-of-the-box pure Java API[40]

If not run inside K8s a special care is needed for RabbitMQ auto-failover
implementation[41]

Automatic connection failover is available only inside Kubernetes
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APACHE IGNITE AS A COMPUTING GRID: GOOD
Native Java API for messages and distributed computing tasks
Built-in distributed basic ML models
Automatic connection failover for both thick and thin clients
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APACHE IGNITE AS A COMPUTING GRID: NOT SO GOOD

Weaker delivery guarantees — not suitable for important messages (in finance e.g.)[42]

Built-in ML models lack certain features for our use case

Python thin client doesn't support neither message nor computing API[34][43]

Using the thick client API from Python requires Py4J Python-Java bridge[36]
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PYTHON VS JULIA AS APACHE IGNITE ML ALTERNATIVE

Apache Ignite ML MLJ  (Julia) scikit-learn  (Python)

Fit time + Cross-validation time (10 folds)
Apache Ignite ML MLJ scikit-learn

Linear Regression (SAG) 5.438 sec+40.237 sec 0.066 sec+0.534 sec
Linear Regression (LBFGS) 0.196 sec+1.372 sec 0.082 sec+0.551 sec
Decision Tree 1.664 sec+12.259 sec 0.146 sec+1.465 sec 0.197 sec+1.755 sec

Ignite ver. 2.10.0 (1 Ignite node), Julia ver. 1.6.1 (MLJ v0.16.4, MLJLinearModels v0.5.4, DecisionTree v0.10.10), Python ver. 3.8.6 (scikit-learn v0.23.2), 
Windows 10, 32 GB RAM, Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, Data: a subset of Fraud Detection dataset  (7936 rows, 30 columns, 2 classes)

ML in both Julia and Python is much faster than Apache Ignite ML exactly for our case
(~8-10k observations)

[48] [3]

LogisticRegressionModel lrClassifier = 

    new LogisticRegressionSGDTrainer() 

    .fit(...); 

DecisionTreeModel dtClassifier =  

    new DecisionTreeClassificationTrainer() 

    .fit(...);

lr_classifier = LogisticClassifier(...) 

lr_mach = machine( 

    lr_classifier, ...) |> fit! 

dt_classifier = ( 

    @load DecisionTreeClassifier pkg=DecisionTree)(...) 

dt_mach = machine( 

    dt_classifier, ...) |> fit!

lr_classifier = LogisticRegression(...) 

lr_classifier.fit(...) 

dt_classifier = DecisionTreeClassifier(...) 

dt_classifier.fit(...)

[49][50]

A limited set of opt. solvers in Apache Ignite ML (e.g. LogisticRegressionSGDTrainer for
LogisticRegressionModel, in scikit-learn — 5 solvers)

No nested cross-validation , no stratified cross-validation  in Apache Ignite ML[51] [52]
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PYTHON VS JULIA AS APACHE IGNITE ML ALTERNATIVE
WHERE PYTHON > JULIA

WHERE PYTHON = JULIA

WHERE JULIA < PYTHON

Python Ignite thin client, no such client for Julia

Ray Serve  (e.g. Genie.jl + Dagger.jl is not an equivalent replacement)[4][5][6]

Python has a much more mature ML ecosystem comparing to Julia
scikit-learn is sometimes faster than MLJ

Calling Apache Ignite thick client Java API: Py4J  (Python) vs JavaCall.jl  (Julia)[36] [53]

Calling Apache Ignite thick client C++ API: Cython  (Python) vs CxxWrap.jl  (Julia)[54] [55]

Julia is more flexible

Easier parallelism (native threads in Julia vs GIL  in Python)[56]
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POSTGRESQL → APACHE IGNITE: MIGRATION DIFFICULTIES
Apache Ignite cache imitating atlassian_host table needs to be created prior to starting
Atlassian Connect Spring Boot[44]

Fields having non-SQL datatypes (custom class-valued fields) need to be stored as XML
(via Binarylizable  and QueryEntity ) to be readable in SQL client tools such as
DBeaver and DataGrip

[45] [46]

Still not possible to get the list of all atomics names inside the cluster[47]

24 /  34



CELERY + RABBITMQ → APACHE IGNITE: MIGRATION DIFFICULTIES
Still need a place to run Python-based ML calculations, that is why Ray Serve
More care on the front-end is required due to no delivery guarantees
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QUESTIONS?
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